
Supplemental Information 
 
Reinforcement-Learning Modeling 
The modeling approach used in this paper has been described in detail previously by Otto et al. 
(Otto, Raio, Chiang, Phelps, & Daw, 2013). The model is a variation of the hybrid reinforcement-
learning model used by Daw et al. (Daw, Gershman, Seymour, Dayan, & Dolan, 2011). The 
reinforcement learning model consists of a weighted combination of first, a model-free 
SARSA(𝜆) temporal difference algorithm that incrementally updates a fixed value for the first-
stage choice based on reward history, and second, a model-based “tree-search” reinforcement 
learning algorithm (explicit computation of Bellman’s equation), which represents all possible 
choice options and associated outcomes (Sutton & Barto, 1998). 

The hybrid model consists of model-free and model-based algorithms, both of which 
estimate state-action value functions Q(s,a) that map each state-action pair to its expected 
future value. The task consists of three states (first stage sA; second stage sB and sC), each with 
two possible actions (aA and aB), and a reward (r). For every trial (t), the first and second stages, 
actions, and rewards are denoted as s1,t, s2,t, a1,t, a2,t, r1,t (always zero), and r2,t. 
 
Model-free component 
The model-free temporal difference algorithm updates the state action values according to the 
following formula: 

𝑄!" 𝑠!,! , 𝑎!,! =   𝑄!" 𝑠!,!!!, 𝑎!,!!!   +   𝛼𝛿!,! 
with 

𝛿!,! =    𝑟!,! +   𝑄!" 𝑠!!!,! , 𝑎!!!,! −   𝑄!" 𝑠!,!!!, 𝑎!,!!!  
 

As such, 𝛿 is the reward-prediction error (RPE), and 𝛼 is the learning rate parameter. At 
stage one, reward 𝑟 = 0 and the RPE is driven by the estimate of the second stage action 
value. At the second stage, 𝑟 = 0  or  1. The eligibility trace 𝜆, which is only carried over across 
stages for one trial, is used to further update the first-stage action by the second-stage RPE 
according to:  

𝑄!" 𝑠!,! , 𝑎!,! =   𝑄!" 𝑠!,! , 𝑎!,!   +   𝛼𝜆𝛿!,! 
 
Model-based component 
For the model-based algorithm, the first-stage learning function differed from the model-free 
algorithm in that it took into account the 70/30-transition probability structure and computed 
cumulative state-action values from all possible outcomes. The second-stage action value 
estimate is the same across the model-free and model-based algorithms. As such, the model-
based algorithm updates the first stage action values according to the following formula: 
 

𝑄!" 𝑠!,! , 𝑎!,! =   𝑃 𝑠!|𝑠!, 𝑎! max
!∈{!!,!!}

𝑄!" 𝑠! , 𝑎 +   𝑃 𝑠!|𝑠!, 𝑎! max
!∈{!!,!!}

𝑄!" 𝑠! , 𝑎  

 
Choice rule 
Finally, to connect the values to choices, we use a softmax choice rule, which assigns a 
probability to each action according to the combination of both QMB and QMF, each weighted with 
a separate inverse temperature parameter, βMB and βMF, to calculate the stay probability at each 
stage: 
 

𝑃 𝑎!,! = 𝑎|𝑠!,! =   
exp 𝛽!" ∙ 𝑄!" 𝑠!,! , 𝑎 + 𝛽!" ∙ 𝑄!" 𝑠!,! , 𝑎 + 𝑝 ∙ rep 𝑎
exp 𝛽!" ∙ 𝑄!" 𝑠!,! , 𝑎! + 𝛽!" ∙ 𝑄!" 𝑠!,! , 𝑎! + 𝑝 ∙ rep 𝑎!!!

 

 



where rep(a) is defined as 1 for a first-stage action that repeated the action of the previous trial, 
which when combined by the “stickiness” parameter (𝑝), captures first-order perseveration (𝑝 
>0) or switching (𝑝 <0). At the second stage, as there is no model-based learning possible, the 
equation simplifies to only contain the model-free value function QMF with its own inverse 
temperature term (β2). 
 
Group level modeling 
The above single-subject modeling was embedded within a multi-level random effects model. All 
of the free parameters of the model (α, λ, βMB, βMF, β2, 𝑝) were taken as random effects, 
instantiated separately for each subject s from a common group level distribution. Parameters 
with infinite support (β2 and 𝑝), the group level distributions were Gaussian with free mean and 
standard deviation: 

β!!  ~  𝑁   𝜇!! ,𝜎!!    
 
To test the dependence of the model-based and model-free effects on age, age was entered 
into a regression at the group level : 
 

β!"!~  𝑁   𝜇!" +   β!"#$% ∙   𝑎𝑔𝑒 𝑠 ,𝜎!!"  
 
And similarly for βMF. 

The parameters with support in [0,1] (α and λ) were assumed to be drawn form the 
group level beta distribution: 

α!  ~  𝐵𝑒𝑡𝑎 𝐴!,𝐵!  
 
Finally, we used uninformative priors to estimate the parameters of the group level distributions: 
for all means, the broad Gaussian N(0,100), for all standard-deviations, the heavy-tailed 
Cauchy(0,2.5). The priors for the A and B parameters of the beta distributions were given using 
a change of variables that characterizes the distribution’s mean M=A/(A+B) and spread 
S=1/sqrt(a+b), the latter approximating its standard deviation. This allowed us to take as 
uninformative hyperpriors the uniform distributions M~U(0,1) and S~U(0,∞). 
 
Estimation 
We estimated the joint distribution of the parameters of the model, conditional on all subjects’ 
observed choices and rewards. We used Markov Chain Monte Carlo (MCMC) techniques 
(specifically No-U-Turn variant of Hamiltonian Monte Carlo) as implemented in the Stan 
modeling language (Stan Development Team, 2015). Given a probabilistic generative model 
(the above equations) and a subset of observed variables, MCMC techniques provide samples 
from the conditional joint distribution over the remaining random variables. We ran four chains of 
2,000 samples each, discarding the first 1,000 samples of each chain for burn-in. We examined 
the chains visually for convergences and also computed Gelman and Rubin’s (Gelman & Rubin, 
1992) potential scale reduction factors. For this, large values indicate convergence problems, 
whereas values near 1 are consistent with convergence. We ensured that these diagnostics 
were less than 1.1 for all variables. 
 
Results 
Table S1 reports the free parameters of the model by their group-level means and variances 
over individual subjects. We also report the regression slopes estimating how individuals’ 
parameter settings covaried with age. This uncertainty is reported via 25th, median, and 75th 
percentiles of the distribution. Of note, the group-level mean α was centered on 0.35, indicative 
of a more gradual learning process than is ascribed by the regression analysis in the main text, 



which assumes a learning rate of 1 (that is, only the most recent trial influences choice), 
supporting the conclusion that our reported effects reflect longer-term incremental learning, and 
are not limited to patterns of win-stay-lose-shift adjustments. 

 
Table S1. Group level estimates for the free parameters of the reinforcement-learning model 
and estimated slopes for the covariates.  
  Group-level means   
Percentile βMB βMF p β2 λ α 
25 0.273 0.268 0.832 0.940 0.915 0.334 
50 0.314 0.294 0.894 0.989 0.942 0.355 
75 0.356 0.321 0.958 1.036 0.965 0.379 
  Group-level variances   
 βMB βMF p β2 λ α 
25 0.366 0.231 0.678 0.473 0.378 0.485 
50 0.401 0.252 0.725 0.508 0.542 0.524 
75 0.439 0.278 0.779 0.548 0.720 0.565 
 Covariate Slopes     
 βMB-age βMF-age     
25 0.164 0.033     
50 0.205 0.058     
75 0.246 0.085     
 
Regression Analysis 
In the main text, we used categorical age groupings (i.e., children, adolescents, adults) to 
visually depict age-related changes in behavioral patterns reflecting reinforcement learning 
strategies (1st stage stay choices). However, in our statistical analysis of age effects, we chose 
to treat age continuously, as a categorical division of age groups is somewhat arbitrary and a 
continuous analysis would better capture gradual developmental changes in reinforcement 
learning processes. 

Here, we additionally repeated the mixed-effects analysis treating age categorically and 
using linear contrasts (doBy package in R) to test for categorical age group (child, adolescent, 
and adult) differences in model-free and model-based behavior. Children showed no difference 
in model-free behavior from adolescents (p=0.49, uncorrected) or adults (p=0.13, uncorrected). 
However, the model-free effect as significantly higher in adults than adolescents (p=0.033, 
uncorrected).  This difference does not remain significant after correcting for multiple post-hoc 
comparisons. Moreover, this categorical grouping clearly reveals the absence of a linear 
increase from childhood to adulthood in model-free choice. As for the model-based comparison, 
children show significantly less model-based behavior than adolescents (p=0.012, uncorrected), 
and adults (p=0.00012, uncorrected), and there is no difference between adolescents and 
adults (p=0.15, uncorrected).  
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